Meta Learn on Constrained Transfer Learning for Low Resource Cross Subject EEG Classification
                    
                        
                            نویسندگان
                            
                            
                        
                        
                    
                    
                    چکیده
منابع مشابه
A subject transfer framework for EEG classification
This paper proposes a subject transfer framework for EEG classification. It aims to improve the classification performance when the training set of the target subject (namely user) is small owing to the need to reduce the calibration session. Our framework pursues improvement not only at the feature extraction stage, but also at the classification stage. At the feature extraction stage, we firs...
متن کاملCross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination
Using machine-learning methodologies to analyze EEG signals becomes increasingly attractive for recognizing human emotions because of the objectivity of physiological data and the capability of the learning principles on modeling emotion classifiers from heterogeneous features. However, the conventional subject-specific classifiers may induce additional burdens to each subject for preparing mul...
متن کاملImproving EEG-Based Emotion Classification Using Conditional Transfer Learning
To overcome the individual differences, an accurate electroencephalogram (EEG)-based emotion-classification system requires a considerable amount of ecological calibration data for each individual, which is labor-intensive and time-consuming. Transfer learning (TL) has drawn increasing attention in the field of EEG signal mining in recent years. The TL leverages existing data collected from oth...
متن کاملTransfer Learning for Low-Resource Neural Machine Translation
The encoder-decoder framework for neural machine translation (NMT) has been shown effective in large data scenarios, but is much less effective for low-resource languages. We present a transfer learning method that significantly improves BLEU scores across a range of low-resource languages. Our key idea is to first train a high-resource language pair (the parent model), then transfer some of th...
متن کاملLearning subject-specific spatial and temporal filters for single-trial EEG classification.
There are a wide variety of electroencephalography (EEG) analysis methods. Most of them are based on averaging over multiple trials in order to increase signal-to-noise ratio. The method introduced in this article is a single trial method. Our approach is based on the assumption that the "response of interest" to each task is smooth, and is contained in several sensor channels. We propose a two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3045225